

Integrated Solutions and Services for Oil & Gas Production Enhancement

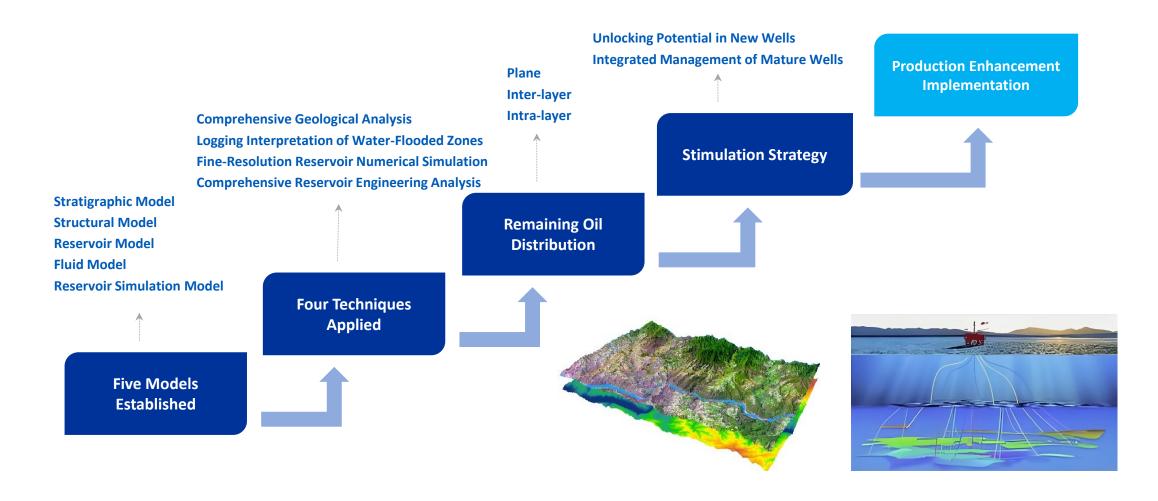
KERUI PETROLEUM TECHNOLOGY

Contents

01 RESERVOIR DESCRIPTION

Design of Oil and Gas Production Enhancement Solutions

Application of Production Enhancement Technologies and Services



MORE EFFICIENT IN ENERGY EXTRACTION www.keruioil.com

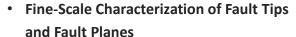
I Reservoir Description

After years of development, mature oilfields shows highly dispersed and localized oil enrichment. To enhance production, five models (e.g. stratigraphic and structural models) and four technical approaches (e.g. integrated geological analysis and comprehensive reservoir engineering study) are applied characterize the distribution of remaining oil and maximize residual oil recovery.

Reservoir Description Technology: Reservoirs formed by different **genetic mechanisms** and **geological settings** show significant differences in reservoir characterization and development practices, necessitating the establishment of targeted research approaches and technical methods.

Different Types of Reservoirs

() 1


Integrated Reservoirs

- Reservoir Architecture Profiling
- High Water-Cut Zone Mapping
- Rhythmite Stratification Modeling

02

Fault-Block Reservoirs

- Description and Correlation of Low-Order Faults
- Geological Modeling of Complex Fault Systems

03

Special Lithologic Reservoirs

Spatial Distribution and Attribute
 Characteristics of Fractures

Reservoir Rocks

Technical Focus

Rhythm Stratification Technology for
Thick Oil Zones
High-Resolution Intraformational
Barrier Prediction

Precision Characterization of Minor Fault Systems

Characterization Technique for Reservoir Spaces and Fractures

Contents

01 RESERVOIR DESCRIPTION

Design of Oil and Gas Production Enhancement Solutions

Application of Production Enhancement Technologies and Services

MORE EFFICIENT IN ENERGY EXTRACTION www.keruioil.com

II Design of Oil and Gas Production Enhancement Solutions

Kerui Unconventional Oil and Gas Research Institute is equipped with high-performance experimental equipment and internationally advanced software systems. Based on comprehensive geological and reservoir engineering research, it develops technically and economically feasible oil and gas production enhancement plans for target reservoirs.

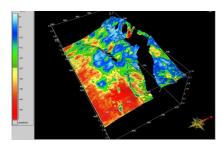
Research Capability

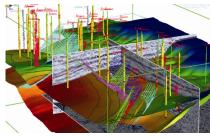
Comprehensive Geological Study

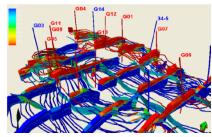
- Fine Structural Interpretation of Complex Structural Belts •
- Sedimentary System Analysis and Reservoir Characterization
- Comprehensive Analysis of Hydrocarbon Accumulation
- Fine Geological Modeling of Oil and Gas Reservoirs
- Reserve Calculation and Evaluation

Reservoir Engineering Study

- Research on Development Policies and Technologies for Complex Oil and Gas Reservoirs
- Study on Reservoir Numerical Simulation and Remaining Oil Distribution
- Formulation of Oil and Gas Production Enhancement Plans
- Economic Evaluation of Complex Oil and Gas Reservoirs


Hardware and Software


Software


- CYCLOG Stratigraphic Correlation Software
- Jason, Strata and other seismic inversion software
- Geoframe and Landmark Comprehensive Seismic
 Interpretation Software
- Petrel Geological Modeling Software
- Eclipse and CMG Reservoir Simulation Software

> Hardware

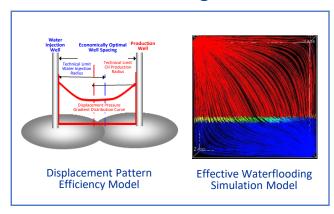
- HP Xw9400 and DELL 7910 Series Workstations,
 High-Performance Microcomputers and Other Main
 Equipment
- Printers, Plotters, Scanners and Other Supporting
 Equipment

Contents

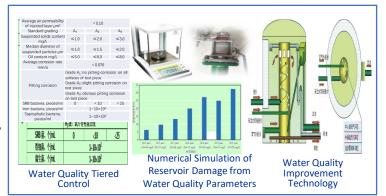
01 RESERVOIR DESCRIPTION

Design of Oil and Gas Production Enhancement Solutions

Application of Production Enhancement Technologies and Services


MORE EFFICIENT IN ENERGY EXTRACTION www.keruioil.com

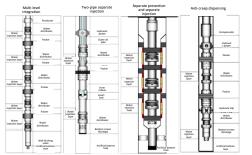
Precision Waterflooding Technology


Technical Introduction For reservoirs with **depleted formation energy** and **poor waterflood performance**, integrate multiple technologies - **well-pattern waterflooding optimization**, **fine-grained zonal injection and water quality classification management** to supplement energy and achieve an effective swept volume and displacement efficiency in water injection.

Technical Advantages

■ Well Pattern Waterflood Optimization Technology

- Optimize the design of efficient displacement well patterns
- Supplement energy
- Enhance displacement efficiency


☐ Tiered Water Quality Management Technology

- · Tiered water quality control
- Integrated optimization package for water quality parameters
- Ensure adequate and high-quality water injection

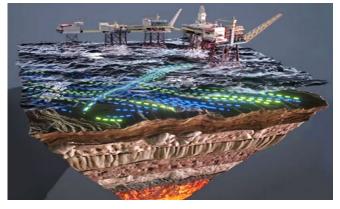
□ Precision Layered Water Injection Technology

 A series of tailored fine-grained injection techniques and testing methods for different reservoir types, supported by independently designed and matched injection tools.

■ Flow Field Vector Adjustment /Quantitative Description Technology of High Water Consumption Zones

For high-water-cut mature oilfields with established preferential water injection channels, based on the identification of high water-consuming zones, flow field adjustments are implemented to reduce water cut and improve the development effect.

Polymer Flooding Development Technology


Technical Introduction

By adding high-molecular-weight polymers into the injection water to increase the viscosity of the water phase and reduce its permeability through adsorption and retention, thereby reducing the water-oil mobility ratio, enhancing sweep efficiency and improving the recovery factor.

> Technical Advantages

- **Fit for different types of reservoirs:** the oil displacement mechanism is simple and stable, with no complex chemical reactions involved, low reservoir condition requirements and wide applicability.
- High chemical stability: modern polymer formula has strong thermal and salt resistance, and can maintain oil displacement performance under different geological conditions.

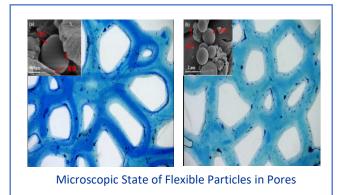
Based on reservoir properties and formation water mineralization, reservoirs suitable for polymer flooding are classified into three types, supported by a mature product system tailored to varying requirements.

Type of Reservoir		Permeability mD	Formation Temperature °C			Formation Crude Oil Viscosity mPa·s
Class I		> 500	< 70	< 1.0	< 200	< 150
Class II		> 500	70-80	1.0-3.0	< 400	< 150
Class III	1	> 100	< 95	< 3.0	> 400	< 150
	2	> 500	< 70	< 3.0	> 400	< 500

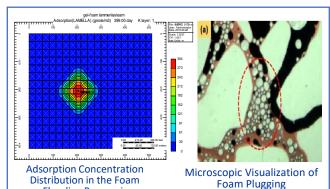
III Application of Production Enhancement Technologies and Services

■ Water Shut-off, Profile Control and Flooding Adjustment Technology

Technical Introduction


- Aiming at the problems of poor water injection sweep and low water flooding efficiency of the reservoir, this technical series provides integrated solutions to improve planar and inter-layer profile control and injection effects;
- According to the requirements of different reservoir water flooding processes, water shut-off and profile control, nitrogen foam, three-phase flooding and other processes are provided;
- Improve the energy supplement and effective sweep volume and displacement efficiency of water flooding reservoir, greatly enhancing the recovery factor of secondary oil recovery.

Technical Advantages


Water-Blocking and Profile Adjustment Technology

- Systematized plugging agent systems
- Addressing problems of temperature resistance, salt resistance, etc.

☐ Three-Phase Compound Flooding Technology

- Nitrogen foam plugging
- Flexible particle bridging
- Water phase energy enhancement
- Widely applicable for water control and oil enhancement

Flooding Reservoir

Nitrogen Foam Technology

- Nitrogen pressurization energy supplement
- Foam plugging and profile control
- Dynamic plugging of pores with high water content.

III Application of Production Enhancement Technologies and Services

Compound Water Injection for Low-Permeability Reservoirs

Technical Introduction

The compound water injection oil recovery technology was developed by combing conventional booster pumps with chemical agents. The injection pressure is slightly higher than the reservoir's fracture pressure, leading to the formation of micro and short fractures around the water injection well. This not only increases water injection volume but also effectively controls water breakthrough. The daily injection rate per well can reach several hundred cubic meters.

Technical Advantages

Significant Pressure Drawdown and Strong Water Injectivity in Formation

Pressurized Water Injection Technology

Replenishment of Reservoir Energy

Poor Reservoir Properties and Limited Water Injectivity

Permeation and Drag Reduction Technology Reducing Water Injection Resistance by Chemical Agents

High-Pressure Water Injection Equipment

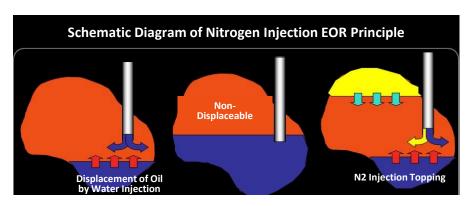
Thick Formation Horizontal Wells with Remaining Oil Concentrated at the Top

Nitrogen Energy Accumulation Technology Replacement of the Remaining Oil at the Top

Reservoir Heterogeneity and High Water Cut in Oil Wells

Controlling the Speed of Water Breakthrough

Pressurized Water Injection Equipment



■ Gas Stimulation Technology for Carbonate Reservoirs

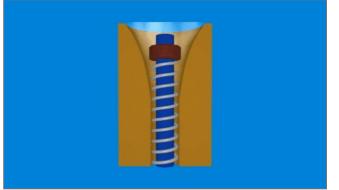
- Technical Introduction
- High-purity nitrogen is separated from air by nitrogen production equipment and injected into the formation after compression, rapidly replenishing formation energy, displacing remaining oil in the reservoir and enhance oil well production.
- Two application modes: single-well huff and puff and nitrogen flooding.
- Nitrogen Advantages
- Abundant gas source, with locally available materials
- Stable chemical properties and no damage to the strata
- Odorless, non-toxic, non-combustible, non-explosive and safe for injection

Application Scenario

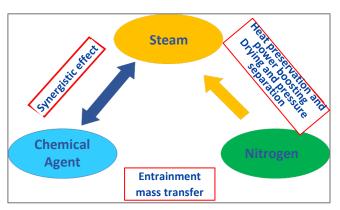
- Fracture-Vuggy Carbonate Reservoirs: widely applied at scale in northwest China oilfields, becoming the leading EOR technology.
- Fractured-Porous Carbonate Reservoirs: mainly applied in oilfields in eastern China, achieving an integrated well selection and operation service, enabling redevelopment of shut-in and abandoned wells.

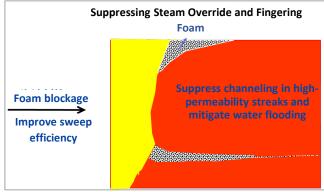
Schematic Diagram of Fractured-Porous Carbonate Reservoir

Schematic Diagram of Fracture-Vuggy Carbonate Reservoir


■ Integrated Heavy Oil Production Technologies

- Technical Introduction
- A series of technologies specifically for systematic development of high viscosity heavy oil reservoirs;
- The whole-process dry-keeping technology combines nitrogen foam, steam huff and puff, thermal recovery and oil displacement;
- Enhances reservoir displacement efficiency, reduces oil viscosity and increases heavy oil recovery.


Technical Advantages



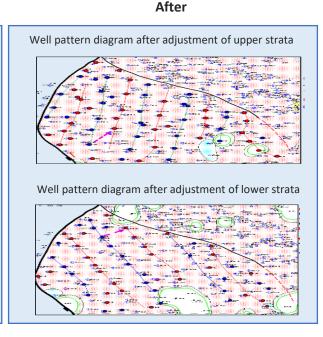
- Whole Process Thermal Management Technology
- ✓ Equipment and processes throughout steam generation, transmission, and injection ensure bottom-hole dryness above 63%.

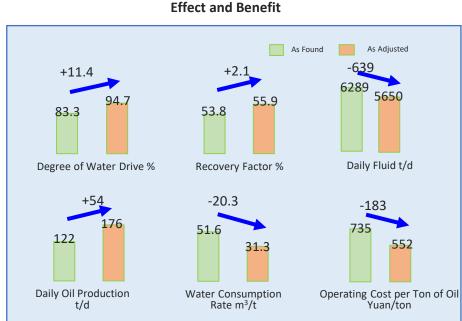
- ☐ Uniform Steam Injection and Production Technology
- ✓ Balanced production allocator: solves the problems of uneven steam absorption and large difference in reserve production.

- Nitrogen+ Chemical Assisted Thermal Recovery Technology
- ✓ Nitrogen forms a gas cap for heat insulation and energy transfer; Chemical agents enhance foam stability and block steam channeling.

- ☐ Treatment Technology for High Water-Cut Well
- ✓ Nitrogen foam profile control: utilize foam plugging to improve the steam sweep efficiency.

Case I: Fine Water Injection Technology for Well Pattern Interchange Flow Field Adjustment in G Area

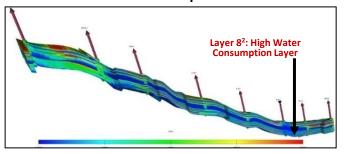

> Technical Adjustments

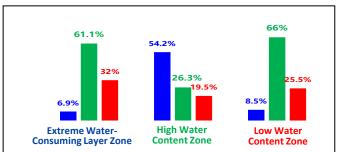

- Interchange of upper and lower strata well pattern to change injectionproduction flow line by 40°
- Oil well sidetracking for water avoidance in high water consumption area
- Blocking and adjustment of deep thick oil layer in the water well
- Multi-stage plugging of tubing, workload for old wells changing strata: 89 Wells

Implementation Effect

- 44% increase in daily oil production
- 25% reduction in operating cost per ton of oil
- 35% decrease in water consumption per ton of oil d
 2.1% increase in recovery factor

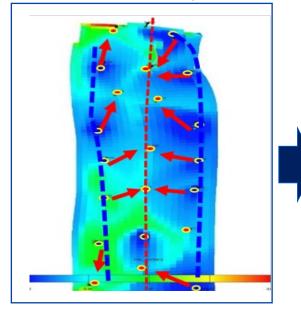
Planar remaining oil distribution map of upper strata Water Cut 97.7% Planar remaining oil distribution map of lower strata Water Cut 98.1%

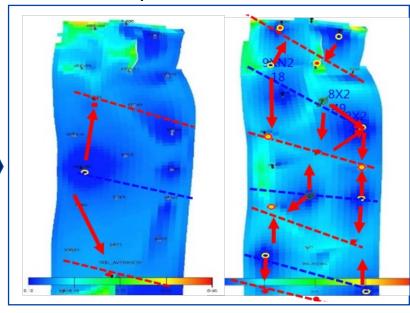




Case II: Fined Water Injection Technology for Strata Subdivision Flow Field Adjustment in T Block

Before Adjustment


Longitudinal residual oil saturation distribution profile


Before Adjustment

Distribution diagram of overlapping residual oil of T blocks 8¹, 8² and 8³

After Adjustment

Residual oil distribution map of strata subdivision development for 8¹⁺³ and 8² of T block

SOLUTIONS

> Technical Adjustment Scheme


- Vertical subdivision of two sets of development strata
- Horizontal well pattern transformation
- Subdivision water injection in rhythmic layers
- Completion of water injection adjustment

Case III: Chemical Flooding Development Technology

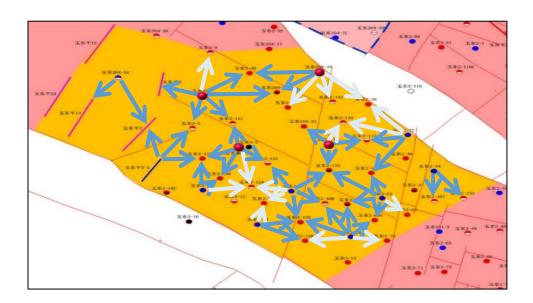
More than 730 polymer flooding projects have been implemented globally, mainly in **onshore sandstone reservoirs in the United States, Germany, India, and China**.

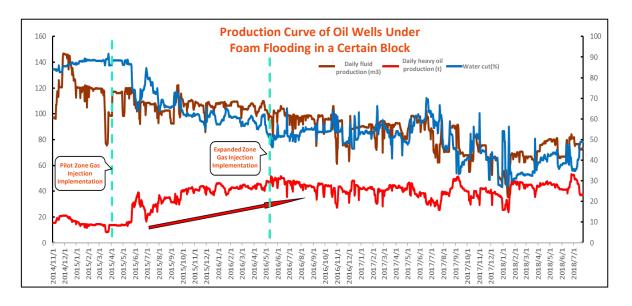
Oilfield A

- Temperature: <50°C; Salinity: <5,000 mg/L
- Good reservoir properties and low oil viscosity. Suitable for polymer flooding.
- In 2023, oil and gas equivalent production was 35 million tonnes, including over 10 million tonnes from chemical flooding.

Oilfield B

- Temperature: 50°C-90°C; Salinity: < 30,000 mg/L
- Poor reservoir properties and high oil viscosity; polymer flooding is challenging.
- In 2023, oil and gas equivalent production reached 24 million tonnes, with over 3 million tonnes from chemical flooding.




■ Case IV: Deep Heavy Oil Reservoir in Western China – Foam Flooding Pilot

Burial depth > 2,000 m Reservoir thickness > 40 m

Crude oil viscosity: 286 mPa·s (heavy oil), small waterflood sweep volume, and the recovery degree <5%.

- Pilot trials started in September 2014, with industrial trials in June 2017.
- In a certain block, the water cut of 20 effective wells decreased from 84.1% to 34.4%, and daily oil production increased from 47.6 tonnes to 191 tonnes.
- A total of 38 well groups and 125 oil wells underwent nitrogen foam flooding, achieving an incremental oil production of 150,000 tonnes.

Case V: Compound Water Injection for Low-Permeability Reservoirs in Western China

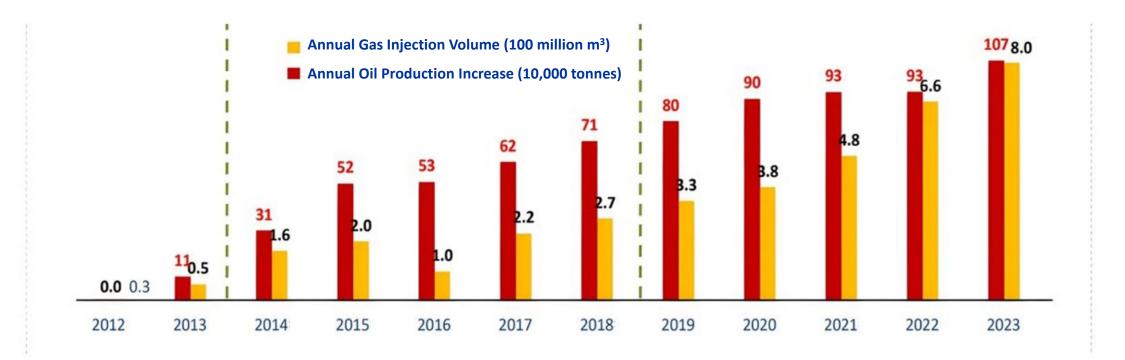
2022 Stimulation Results - Target Block

- 5 horizontal wells treated with nitrogen + activated water (with imbibition drag-reducing agents)
- Cumulative oil increase: 2,490.8 tonnes; 3 wells with significant response (averaging 830.3 tonnes/well)
- Injection pressure 2–6 MPa lower than adjacent wells, achieving absorption enhancement and drag reduction

Effectiveness Statistics of Compound Water Injection Measures in a Certain Block

S/N	Well No.	Pre-Opera	tion Production Sta	atus	Current Production Status After Operation			Production	Accumulated Oil	Accumulated
		Daily Fluid Production (m³)	Daily Oil Production (t)	Water Cut (%)	Daily Fluid Production (m³)	Daily Oil Production (t)	Water Cut (%)	Days (Days)	Production (t)	Oil Increment (t)
1	001	3.33	1.61	51.6	1.55	0.77	50.2	367	415.7	Minor Effect
2	002	0.8	0.64	19.5	6.64	3.86	41.9	370	1045.4	808.6
3	003	3.01	1.69	43.7	3.76	2.52	33	350	1539.5	948.7
4	004	2.16	1.74	19.5	1.33	0.91	31.7	350	508.3	Minor Effect
5	005	0.9	0.72	20.0	4.46	3.22	27.8	320	963.9	733.5
Total			6.4			11.28			4472.8	2490.8

Case VI: Fractured Carbonate Reservoir in Western China- Gas Injection Stimulation

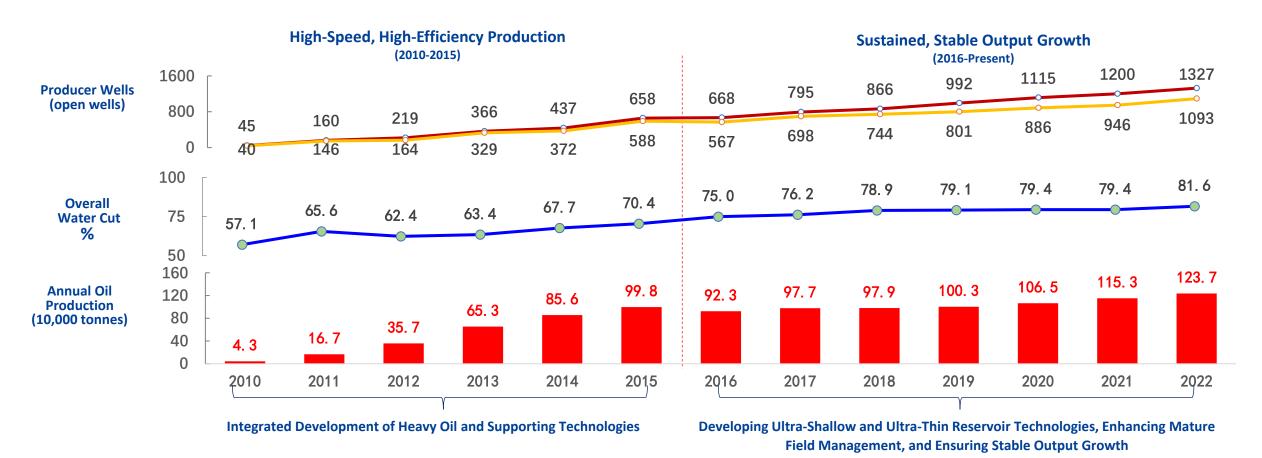

Test Stage

In 2012, a pilot nitrogen injection test was conducted with 8 cycles of nitrogen huff and puff, increasing oil production by 19,500 tonnes.

Expanded Application Stage

By the end of 2023, 992 gas injection wells operated with 3,028 well treatments, controlling 500 million tonnes of reserves, injecting 3.66 billion m³ nitrogen, and increasing oil production by 7.43 million tonnes.

In 2023, 800 million m³ nitrogen injection alone led to an annual oil production increase of 1.07 million tonnes.



Case VII: Integrated Development Technology Case of Heavy Oil - A Shallow and Thin Heavy Oil Field in Eastern China

Shallow reservoir (150-750 m), thin pay zone (2-6 m), low temperature/pressure (18-35 °C, 2.0-6.1 MPa), and high-viscosity heavy oil (5-9 \times 10⁴ mPa·s). Integrated development enabled stable production of over 1 million tonnes annually.

In 2022, 1,093 wells produced 1.237 million tonnes of oil, with 81.6% water cut.

ACHIEVING, CREATING AND SHARING TOGETHER

Shandong Kerui Petroleum Technology Co., Ltd.

MORE EFFICIENT IN ENERGY EXTRACTION www.keruioil.com